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Abstract

The motivation of this paper is to obtain an analytical closed form of a quadratic
objective function arising from a stochastic decision process with bivariate expo-
nential probability distribution functions that may be dependent. This method is
applicable when results need to be offered in an analytical closed form without
double integrals. However, the study only applies to cases where the correlation
coefficient between the two variables is positive or null. A stochastic, stationary
objective function, involving a single decision variable in a quadratic form is stud-
ied. We use a primitive of a bivariate exponential distribution as first expressed
by Downton (1970) and revisited in Iliopoulos (2003). With this primitive, opti-
mization of objective functions in Operations Research, supply chain management
or any other setting involving two random variables, or calculations which involve
evaluating conditional expectations of two joint random variables are direct. We
believe the results can be extended to other cases where exponential bivariates are
encountered in economic objective function evaluations. Computation algorithms
are offered which substantially reduce computation time when solving numerical
examples.
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1 Introduction

This paper arose from the necessity to solve a specific case in supply chain
management. Let us imagine a supplier and a manufacturer engaged in com-
mercial transactions involving the exchange of a vital input for the manu-
facturer, the price of which is stochastic and stationary. Both supplier and
manufacturer are price takers, hence the price fluctuations are exogenous to
both actors. This same manufacturer, on the downstream side, must also re-
spond to demand from end customers. This demand fluctuates exogenously in
a stochastic stationary fashion. We are interested in problems where demand
and price are two variables which impact the manufacturer’s cost structure in
a supply chain problem. We tend to consider that these situations are amply
represented in practice.

Generally, in the literature because the mathematics quickly become intractable,
most models cannot represent real world conditions and very often involve just
one random variable. We list here some examples of this literature.

Lariviere (1999) models a one period setting in which a monopolistic manu-
facturer sells to a retailer facing a newsvendor problem. The demand faced by
the retailer is an exogenous stochastic random variable. It is shown that, be-
cause the manufacturer is a monopolist and because of the elasticity function
of standard economics, either price or demand can be chosen as the random
variable and the second variable follows from inverting the cumulated distrib-
ution function of the first. The author on page 238 of Lariviere (1999) points
out that the outcomes would be markedly different in the case of a compet-
itive setting. Using the results presented in our paper, these outcomes could
be evaluated using a bivariate exponential distribution for price and demand
in a competitive setting.

Wu et al. (2002) model contracting arrangements between one seller and one
or more buyers. The seller and buyers can negotiate bilateral contracts in ad-
vance and use the spot price reference on the day to complement the contract.
An underlying assumption is that the seller is a monopolist, or behaves in
a monopolistic way and hence that the final demand is a result of the price
practised on the Spot market. Their model would have been greatly enhanced
had the authors been able to model two random variables: price on the spot
market upstream of the buyer and demand downstream from the buyer. Ex-
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tensions Wu et al. (2001a,b) of Wu et al. (2002) to cases of multi-seller and
multi-buyer settings still use the traditional Willingness-To-Pay demand func-
tion which denotes that the final demand is a function of the price practised
in the spot market for the good being resold.

In Kleindorfer & Wu (2003), a capacity-constrained seller and a buyer trans-
act through traded options on a B2B (Business-to-Business) and complement
these transactions by other transactions through an open Spot market ex-
change. The good which is being traded is further sold on by the buyer who
receives some demand Ds which is a function of the spot price observed in the
Spot market Ps. Even though it does not clearly state it, this model basically
assumes that the seller is a monopolist and the buyer’s demand is competing
for constrained capacity from this seller with other buyers in the market. The
ultimate demand is only a resultant of the price variable. In the numerical ex-
ample, the distribution of the spot price follows an exponential distribution.
The authors would probably be able to enlarge their results to competitive
market settings using the results established in our paper.

In Spinler & Huchzermeier (2005), the model features a two-period market
model with state contingent spot prices and options exchanged by a buyer
who needs to satisfy demand and a seller who needs to use available but
constrained capacity by selling either on the spot market or through options for
future delivery. Once again, because of mathematical complexity, Demand has
been modeled to take only two states: either demand can be totally satisfied
by exercising the options or it can only be partially satisfied when it exceeds
the quantity contracted through options and the buyer of this capacity needs
to turn to the spot market for the remaining part.

To our knowledge, supply chain literature involving two random variables is
scarce. Seifert et al. (2004) study optimal procurement strategies in a model
of spot markets and alternative long term contracts. In their model, both spot
prices and demand follow a stochastic process with known mean and standard
deviation. The model further derives the optimal closed-form contract quantity
when demand and spot follow a bivariate normal distribution with correlation
ρ ≥ 0.

The other example is Brusset & Temme (2005) which deals with a special case
of a shipper and a carrier who put a contract in place to carry the demand
addressed to the shipper. In Brusset & Temme (2005), the shipper can also
turn to the Spot market for transport capacity from alternative carriers at a
different price from the contract price. This paper discusses various incentives
to coordinate the shipper and carrier’s interests and to bridge information
asymmetry in an environment where both demand and spot price fluctuate.
The present paper’s results have been used (including the routines described
in appendix B on page 21) to give a numerical example in Brusset & Temme
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(2005).

In a more general sense, suppose the manufacturer (buyer), as a participant
in a competitive market where she is a price taker, must meet some exoge-
nous stochastic stationary demand for her product. Suppose moreover that
the buyer must buy some necessary input in an upstream market to be able
to meet this demand. Suppose finally that the market for this input is also
competitive. Both demand and price are random variables which may or may
not be dependent. The manufacturer must deal with uncertainty in both her
costs (price of input) and her sales (quantity to be sold). This paper ad-
dresses the case where both price and demand follow a bivariate exponential
distribution and the objective function involves using both with two decision
variables. The correlation coefficient between both random variables must be
positive or null. As suggested in Iliopoulos (2003), one of the most important
bivariate distributions in both reliability and economic theory is the bivariate
exponential of which there are various examples in the literature. We justify
choosing this particular bivariate distribution following in the steps of Marshal
& Olkin (1967), namely it would be best for applicability purposes if expo-
nential marginals existed. We have not considered using Gumbel’s bivariate
because correlation cannot exceed ±1/4 and we think that we may encounter
cases of higher correlations in reality. Finally the choice of this bivariate allows
for the random variables to be different in nature (which rules out Freund’s
bivariate). A recent review can be found in Kotz et al. (2000). Downton’s
bivariate exponential distribution (Downton, 1970) has a probability density
function (pdf)

f(x, y, λ1, λ2, ρ) =
λ1λ2

1− ρ
e−

λ1x+λ2y

1−ρ I0

(
2
√

ρλ1λ2xy

1− ρ

)
, (1.1)

where x, y, λ1, λ2 are positive, 0 ≤ ρ < 1, and

I0(z) =
∞∑

k=0

(z/2)2k

k! k!
(1.2)

is the modified Bessel function of the first kind of order zero. The above density
was initially derived in a different form by Moran (1967). The form (1.1) is
derived by Downton (1970) in a reliability context and is a special case of
Kibble’s bivariate gamma distribution (Kibble, 1941).

Let (X, Y ) be an observation from (1.1). The marginal distributions of both X
and Y are exponential with means 1/λ1 and 1/λ2, respectively. As earlier noted
in Iliopoulos (2003), since I0(0) = 1, it is clear that X and Y are independent
if and only if ρ = 0. Downton (1970) showed that ρ is the correlation coefficient
of the two variates.
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2 Optimization of an objective function

Whenever a decision maker has to make a management decision and that
the outcome of his choice is affected by the realization of a random variable,
the equation that represents this interaction between both decision and state
of nature is best captured by a partial moment with the decision variable
cropping up both inside the integral and at the definition of the boundary. If
C(.) is the objective function which has to be optimized, f(.) is the probability
density function of the random variable Q and x is the variable of decision,
then he may have to find x such that

C(x | q) =
C(x)

pr(Q < x)
. (2.1)

This way of expressing the objective function leads to the expected objective
function becoming

E(C(x | q)) =
∫ x

0
C(x)f(q)dq. (2.2)

In this paper we focus on the interaction between two decision variables and
two random variables which leads naturally to this kind of expression:

E(C(x, y | q, p)) =
∫ y

0

∫ x

0
C(x, y)f(q, p)dqdp. (2.3)

When both random variables are independent, solutions flow straightforwardly
as this problem most often can be solved by separating the double integral
into simple ones. It is no longer the case when both random variables are
dependent. We address here this other case for the exponential bivariate.

Let us define a general form of objective function with two decision variables
x and y and two random variables Q and P which can range over a probability
plane Ω = Ωq ×Ωp with x of the same nature as q an outcome of Ωq and y of
the same nature as p an outcome of Ωp:

CΩ (x, y | q, p) = αq + βp + γqp + δq2 + ε (2.4)

for a given set of α, β, γ, δ, ε function of the decision variables x and y in any
form. We consider the behavior of this objective function over a bidimensional
probability plane Ω subdivided into regions with varying bounds, (see figure
1). We are interested in particular in Ω2 = [0; x]× [0; y], where both intervals
can be finite or infinite. A represents the resulting outcome of the objective
function in the probability plane. We have to give an analytical expression for
A, the expected value of the function to be optimized. In classical form, the
expression A is written:

A = E[CΩ(x, y |Q,P )] =
∫∫

Ω
CΩ(x, y)f(q, p, λ1, λ2, ρ) dq dp. (2.5)

5



Fig. 1. The domains Ωk, k = 2, 3, 4, 5; Ω1 is the complete quarter plane.

Our concern is the evaluation of A for any tuple {x, y} ∈ R2∗. We summarize
a few properties of double integrals of the modified Bessel function in annex
A.

2.1 Expressing the cost function in a specific example for CΩ

For the evaluation of the expression A defined in (2.5) using the objective
function CΩ(x, y | q, p) of (2.4), we need the expressions

Aij =
∫∫

Ω
qipj f(q, p, λ1, λ2, ρ) dq dp (2.6)

for the pairs
(i, j) = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0). (2.7)

3 Evaluation of Aij in terms of the K−function and its derivatives

We evaluate the expression Aij of (2.6) and use the notation

λ =
λ1

1− ρ
, µ =

λ2

1− ρ
. (3.1)

To evaluate Aij it is convenient to consider for each function 5 domains, namely
the regions Ωi for i ∈ 1, ..., 4 represented in 1. The following integrals need to
be evaluated

Ak
ij =

∫∫
Ωk

qipj f(q, p) dq dp, (3.2)

where

f(q, p) = (1− ρ)λµe−λq−µpI0

(
2
√

ρλµpq
)

. (3.3)

6



However, we take λ = µ = 1, because general values of these quantities follow
from rescaling q and p. That is, we take

f(q, p) = (1− ρ)e−q−pI0 (2
√

ρpq) . (3.4)

It is possible to express the integrals over one of the domains Ωk in terms of
the integrals over other domains. For example, the integrals over Ω5 follow
from those over Ωk, k = 1, 2, 3, 4. However, when x and y are large, the
integrals over Ω5 may become exponentially small. Consequently, for numerical
computations we need all integrals over all Ω− domains. In the appendix A,
we have given some demonstrations of various integrals and functions which
will play a role in the following. Among them, the following integrals will be
used frequently∫ ∞

0
e−αtI0

(
2
√

βt
)

dt =
1

α
eβ/α,

∫ ∞

0
t e−αtI0

(
2
√

βt
)

dt =
α + β

α3
eβ/α,

∫ ∞

0
t2 e−αtI0

(
2
√

βt
)

dt =
2α2 + 4αβ + β2

α5
eβ/α,

(3.5)

where the first one follows from (A.4), the second and third ones from differ-
entiation of the first one with respect to α. It is also useful to have a different
representation of the L−function. By using the expansion (1.2) of the Bessel
function in (A.1), we can express it in a different way from Temme (1996) as:

L(x, y, p) = (1− p)
∞∑

k=0

pk γ(k + 1, x)

k!

γ(k + 1, y)

k!
, (3.6)

where γ(a, z) is the incomplete gamma function (see (Temme, 1996, Chapter
11))

γ(a, z) =
∫ z

0
ta−1e−t dt, <a > 0, (3.7)

where <a is the real part of a. In a similar way

K(x, y) = e−y
∞∑

k=0

γ(k + 1, x)

k!

yk

k!
. (3.8)

We will show that the functions Ak
ij, i+ j > 0 can be obtained by using deriv-

atives of the L−function, and that, because of (A.2), all Ak
ij can be obtained

from derivatives of the K−function. Useful relations are

∂K(x, y)

∂x
= e−x−yI0(2

√
xy),

∂K(x, y)

∂y
= −

√
x/y e−x−yI1(2

√
xy), (3.9)
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The first relation follows from (A.3) and the second one from (A.7), which
gives

∂K(x, y)

∂y
= −e−x−y ∂I0(2

√
xy)

∂y
. (3.10)

Using I ′0(z) = I1(z) (see 9.6.27 of Abramovitz & Stegun (1964)), we obtain
the second relation in (3.9). Using (A.7) we write the L−function of (A.2) in
a more symmetric form as

L(x, y, ρ) = 1−e−x−yI0 (2
√

ρxy)−e−x(1−ρ)K(y, ρx)−e−y(1−ρ)K(x, ρy). (3.11)

3.1 The integrals Ak
00

For A1
00 we have using the first integral in (3.5)

A1
00 = (1− ρ)

∫ ∞

0
e−p

∫ ∞

0
e−qI0 (2

√
ρpq) dq dp = (1− ρ)

∫ ∞

0
e−(1−ρ)p dp = 1.

(3.12)
For A2

00 we have using (A.1)

A2
00 = L(x, y, ρ) (3.13)

and the relation with the K−function follows from (A.2) or (3.11). Next, for
A3

00 we have

A3
00 =

∫ y

0

∫ ∞

x
f(q, p) dq dp

=
∫ y

0

∫ ∞

0
f(q, p) dq dp−

∫ y

0

∫ x

0
f(q, p) dq dp

= (1− ρ)
∫ y

0
e−(1−ρ)p dp− A2

00

= 1− e−(1−ρ)y − A2
00.

= e−(1−ρ)x K(y, ρx)− e−(1−ρ)yK(ρy, x).

(3.14)

Similarly,

A4
00 =

∫ ∞

y

∫ x

0
f(q, p) dq dp

= 1− e−(1−ρ)x − A2
00

= e−(1−ρ)y K(x, ρy)− e−(1−ρ)xK(ρx, y).

(3.15)
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Finally,

A5
00 =

∫ ∞

y

∫ ∞

x
f(q, p) dq dp

= 1− A2
00 − A3

00 − A4
00

= e−(1−ρ)y K(ρy, x) + e−(1−ρ)xK(y, ρx) + e−x−yI0 (2
√

ρxy) .

(3.16)

3.2 The integrals Ak
10

For A1
10 we have, using the second integral in (3.5),

A1
10 = (1− ρ)

∫ ∞

0
e−p

∫ ∞

0
q e−qI0 (2

√
ρpq) dq dp

= (1− ρ)
∫ ∞

0
e−(1−ρ)p(1 + ρp) dp =

1

1− ρ
.

(3.17)

For A2
10 we have

A2
10 =

∫ y

0

∫ x

0
q f(q, p) dq dp

= (1− ρ)
∞∑

k=0

ρk

k! k!

∫ x

0
uk+1e−u du

∫ y

0
vke−v dv,

(3.18)

giving

A2
10 = (1− ρ)

∞∑
k=0

ρk γ(k + 2, x)

k!

γ(k + 1, y)

k!
. (3.19)

Using the recursion

γ(a + 1, z) = aγ(a, z)− zae−z (3.20)

we obtain

A2
10 = (1− ρ)

∞∑
k=0

(k + 1)ρk γ(k + 1, x)

k!

γ(k + 1, y)

k!
−

(1− ρ)xe−x
∞∑

k=0

ρkxk

k!

γ(k + 1, y)

k!
.

(3.21)

To evaluate the first series we use (3.6) and for the second one we use (3.8).
This gives

A2
10 = (1− ρ)

∂

∂ρ

[
ρL(x, y, ρ)

1− ρ

]
− (1− ρ)xe−x(1−ρ)K(y, ρx). (3.22)
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Using the derivatives (3.9) and the relations (A.6),(A.7), we obtain

(1− ρ)A2
10 = 1− e−x−yI0(ξ) + 1

2
(1− ρ)ξe−x−yI1(ξ)

−(1 + w)e−wK(y, ρx) − (1 + ρz)e−zK(x, ρy) ,

(3.23)

where

ξ = 2
√

ρxy, w = (1− ρ)x, z = (1− ρ)y. (3.24)

Next, for A3
10 we have

A3
10 =

∫ y

0

∫ ∞

x
q f(q, p) dq dp

=
∫ y

0

∫ ∞

0
q f(q, p) dq dp−

∫ y

0

∫ x

0
q f(q, p) dq dp

= (1− ρ)
∫ y

0
e−(1−ρ)y(1 + ρp) dp− A2

10

= γ(1, (1− ρ)y)− ρ

1− ρ
γ(2, (1− ρ)y)− A2

10

=
1

1− ρ

[
1− (1 + ρ(1− ρ)y)e−(1−ρ)y − A2

10

]
=

1

1− ρ

{
(1 + w)e−w K(y, ρx)− (1 + ρz)e−z K(ρy, x)

−e−x−y
[
ρzI0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
.

(3.25)

Similarly,

A4
10 =

∫ ∞

y

∫ x

0
q f(q, p) dq dp

=
1

1− ρ

{
(1 + ρz)e−z K(x, ρy)− (1 + w)e−w K(ρx, y)

−e−x−y
[
wI0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
,

(3.26)

Finally,

A5
10 =

∫ ∞

y

∫ ∞

x
q f(q, p) dq dp

=
1

1− ρ

{
(1 + ρz)e−z K(ρy, x) + (1 + w)e−w K(ρx, y)

+e−x−y
[
(1 + w + ρz)I0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
,

(3.27)
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3.3 The integrals Ak
01

These results follow from §3.2 by interchanging x and y (and w and z) through-
out. We give these result without further details. For A1

01 we have

A1
01 = (1− ρ)

∫ ∞

0
p e−p

∫ ∞

0
e−qI0 (2

√
ρpq) dq dp =

1

1− ρ
. (3.28)

Next, for A2
01:

A2
01 =

∫ y

0

∫ x

0
p f(q, p) dq dp

= (1− ρ)
∂

∂ρ

[
ρL(x, y, ρ)

1− ρ

]
− (1− ρ)ye−y(1−ρ)K(x, ρy).

(3.29)

In terms of the K−function this becomes (cf. (3.23))

(1− ρ)A2
01 = 1− e−x−yI0(ξ) + 1

2
(1− ρ)ξe−x−yI1(ξ)

−(1 + ρw)e−wK(y, ρx)− (1 + z)e−zK(x, ρy) .

(3.30)

For the other functions we have

A3
01 =

∫ y

0

∫ ∞

x
p f(q, p) dq dp

=
1

1− ρ

{
(1 + ρw)e−w K(y, ρx)− (1 + z)e−z K(ρy, x)

−e−x−y
[
zI0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
,

(3.31)

A4
01 =

∫ ∞

y

∫ x

0
p f(q, p) dq dp

=
1

1− ρ

{
(1 + z)e−z K(x, ρy)− (1 + ρw)e−w K(ρx, y)

−e−x−y
[
ρwI0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
,

(3.32)

A5
01 =

∫ ∞

y

∫ ∞

x
p f(q, p) dq dp

=
1

1− ρ

{
(1 + ρw)e−w K(ρx, y) + (1 + z)e−z K(ρy, x)+

+e−x−y
[
(1 + ρw + z)I0(ξ) + 1

2
(1− ρ)ξI1(ξ)

]}
.

(3.33)
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3.4 The integrals Ak
11

For A1
11 we have

A1
11 = (1− ρ)

∫ ∞

0
p e−p

∫ ∞

0
q e−qI0 (2

√
ρpq) dq dp =

1 + ρ

(1− ρ)2
. (3.34)

For A2
11 we have

A2
11 =

∫ y

0

∫ x

0
qp f(q, p) dq dp

= (1− ρ)
∞∑

k=0

ρk γ(k + 2, x)

k!

γ(k + 2, y)

k!
.

(3.35)

By using (3.20) we write

A2
11 = B1 + B2 + B3 + B4, (3.36)

where

B1 = (1− ρ)
∞∑

k=0

(k + 1)2ρk γ(k + 1, x)

k!

γ(k + 1, y)

k!
,

B2 = −(1− ρ)ye−y
∞∑

k=0

(k + 1)
ρkyk

k!

γ(k + 1, x)

k!
,

B3 = −(1− ρ)xe−x
∞∑

k=0

(k + 1)
ρkxk

k!

γ(k + 1, y)

k!
,

B4 = (1− ρ)xye−x−y
∞∑

k=0

ρkxkyk

k! k!
.

(3.37)

For B1 we obtain

B1 = (1− ρ)
∂

∂ρ

[
ρ

∂

∂ρ

{
ρ
L(x, y, ρ)

1− ρ

}]
, (3.38)

which can be evaluated in the form

(1− ρ)2B1 = 1 + ρ + c01e
−x−yI0(ξ) + c11e

−x−yI1(ξ)

−κ11e
−x(1−ρ)K(y, ρx)− κ21e

−y(1−ρ)K(x, ρy),
(3.39)

where

c01 = xyρ(1− ρ)2 − 1− ρ,

c11 = 1
2
ξ(1− ρ)[ρ(1− ρ)(x + y) + 2],

κ11 = 1 + ρ + ρx(1− ρ)(3− ρ) + ρ2x2(1− ρ)2,

κ21 = 1 + ρ + ρy(1− ρ)(3− ρ) + ρ2y2(1− ρ)2.

(3.40)
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The other Bj are given by

B2 = −(1− ρ)ye−y ∂

∂ρ
[ρeρyK(x, ρy)]

= −(1− ρ)y
[
e−y(1−ρ)(1 + ρy)K(x, ρy)− 1

2
ξe−x−yI1(ξ)

]
,

(3.41)

B3 = −(1− ρ)xe−x ∂

∂ρ
[ρexK(y, ρx)]

= −(1− ρ)x
[
e−x(1−ρ)(1 + ρx)K(y, ρx)− 1

2
ξe−x−yI1(ξ)

]
,

(3.42)

B4 = (1− ρ)xye−x−yI0 (2
√

ρxy) . (3.43)

Collecting the results for A2
11, we have

A2
11 =

∫ y

0

∫ x

0
qp f(q, p) dq dp

=
1

(1− ρ)2

{
1 + ρ + e−x−y [c0I0(ξ) + c1I1(ξ)]

−κ1e
−wK(y, ρx)− κ2e

−zK(x, ρy)
}

,

(3.44)

where

c0 = xy(1− ρ)2 − 1− ρ,

c1 = 1
2
ξ(1− ρ)[2 + (1− ρ)(x + y)],

κ1 = 1 + ρ + x(1− ρ)[1 + ρ + xρ(1− ρ)],

κ2 = 1 + ρ + y(1− ρ)[1 + ρ + yρ(1− ρ)].

(3.45)

For the other functions we have (we use also (A.7))

A3
11 =

∫ y

0

∫ ∞

x
qp f(q, p) dq dp =

∫ y

0

∫ ∞

0
qp f(q, p) dq dp− A2

11 =

=
1

(1− ρ)2

{
−e−x−y [(c0 + κ2)I0(ξ) + c1I1(ξ)]

+κ1e
−wK(y, ρx)− κ2e

−zK(ρy, x)
}

,

(3.46)

A4
11 =

∫ ∞

y

∫ x

0
qp f(q, p) dq dp

=
1

(1− ρ)2

{
−e−x−y [(c0 + κ1)I0(ξ) + c1I1(ξ)]

−κ1e
−wK(ρx, y) + κ2e

−zK(x, ρy)
}

,

(3.47)
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A5
11 =

∫ ∞

y

∫ ∞

x
qp f(q, p) dq dp

=
1

(1− ρ)2

{
−3e−x−y [c0I0(ξ) + c1I1(ξ)]− κ1e

−w − κ2e
−z

+3κ1e
−wK(y, ρx) + 3κ2e

−zK(x, ρy)
}

,

(3.48)

where ξ, w and z are given in (3.24), and c0, c1, κ1, κ2 in (3.45).

3.5 The integrals Ak
20

For A1
20 we have using the third integral in (3.5)

A1
20 = (1− ρ)

∫ ∞

0
e−p

∫ ∞

0
q2 e−qI0 (2

√
ρpq) dq dp

= (1− ρ)
∫ ∞

0
e−(1−ρ)p(2 + 4ρp + ρ2p2) dp =

2

(1− ρ)2
.

(3.49)

For the expression A2
20, we find using (3.19) and (3.20)

A2
20 =

∫ y

0

∫ x

0
q2 f(q, p) dq dp

=
1− ρ

ρ

∂

∂ρ

[
ρ2

1− ρ
A2

10

]
− (1− ρ)x2e−x(1−ρ)K(y, ρx), (3.50)

which can be evaluated in the form

(1− ρ)2A2
20 = 2 + c0e

−x−yI0(ξ) + c1e
−x−yI1(ξ) +

κ1e
−x(1−ρ)K(x, ρy) + κ2e

−y(1−ρ)K(y, ρx),
(3.51)

where

c0 = −2 + 1
4
ξ2(1− ρ)2,

c1 = −1
2
ξ(1− ρ)[ρ(1 + x)− yρ(1− ρ)− 3− x],

κ1 = −2 + ρy(1− ρ)[2ρ− 4− ρy(1− ρ)],

κ2 = −2− x(1− ρ)[2 + x(1− ρ)].

(3.52)

4 Rewriting using objective functions

• The case when the expected value is estimated over the entire Ω

14



A from (2.6) using (2.4) becomes:

A =
∫∫

Ω
(αx + βy + γxy + δx2 + ε)f (x, y, λ1, λ2, ρ) dx dy. (4.1)

From (2.6), we can write:

A = αA10 + βA01 + γA20 + εA00 (4.2)

and by using the values found in (3.12), (3.28), (3.17), (3.49), we get

E[CΩ(x, y |Q, P )] = (α + β)

(
1

1− ρ

)
− γ

(
1

(ρ− 1)3

)
+ ε. (4.3)

This last equation is only a function of the parameters α, β, γ, ε which are
expressed only in terms of x and y.

• The case when the decision variables are part of the definition of the prob-
ability plane

This is the case when the objective function’s expected value has to be es-
timated with decision variables involved in the definition of the boundaries
of the probability plane: Ω2 = [0, x] × [0, y], the expectation of the objective
function becomes:

E[CΩ(x, y |Q, P )] = αA2
10 + βA2

01 + γA2
11 + δA2

20 + εA2
00. (4.4)

This solves the problem. We now have expressed the objective function in
every region of the positive quarter plane as an analytical closed form expres-
sion without double integrals expressed only using the K− function and the
modified Bessel function of the first kind.

For numerical testing or numerical illustrations, we have developed some algo-
rithms specifically for Brusset & Temme (2005) to enable extensive numerical
testing of values for these variables in substantially shorter computer time.
These algorithms have been included in appendix as routines for both Math-
ematica 5.0 (B) as well as Maple (B.1) using approximations for the modified
Bessel function of the first kind.

5 Conclusion

We have shown how to circumvent the difficulties of the double integral in the
case of dependent exponential bivariates. With these expressions, instances of
decision processes with polynomial objective functions of any degree involving

15



two decision variables both in the function itself and in the borders of the ap-
plicable domain involving two dependant random variables can be expressed
in analytical form. The optimization of the expected objective functions usu-
ally become very quickly intractable, however, this method should reduce the
difficulties in several instances. Moreover, the routines in Mathematica and
Maple help to establish numerical results in manageable computer time.

These methods can be applied to the problems such as the case of a manu-
facturer and a retailer in the supply chain management efficiency mechanisms
with two exponentially distributed variables. We feel that other Operational
Research problems which have not occurred to us might also benefit with this
approach. The routines spelt out in the annex allow to reduce substantially
the calculation time to solve numerical applications.
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A Integrals of Bessel functions

The following integral, first discussed in Lassey (1982), has been studied at
length in Temme (1986)

L(x, y, p) = (1− p)
∫ x

0

∫ y

0
e−u−v I0 (2

√
puv) du dv, p ≥ 0, (A.1)

and plays a crucial role in the following analysis. For several properties we
refer to Temme (1986); see also Luke (1962). This function can be written as

L(x, y, p) =
(
1− epy−y

)
+ epy−yK(py, x)− epx−xK(y, px), (A.2)

where

K(x, y) = e−y
∫ x

0
e−uI0 (2

√
uy) du = 1− e−y

∫ ∞

x
e−uI0 (2

√
uy) du. (A.3)

This complementary property follows from

ey =
∫ ∞

0
e−uI0 (2

√
yu) du, (A.4)

(see 29.3.81 of Abramovitz & Stegun (1964)). The starting point in Temme
(1986) is the function

I(x, y) =
∫ x

0

∫ y

0
e−u−v I0

(
2
√

uv
)

du dv. (A.5)

We have I(x, y) = −∂L(x, y, p)/∂p at p = 1 and

I(x, y) = x + (y − x)K(x, y)− e−x−y
[

1
2
ξI1(ξ) + xI0(ξ)

]
, ξ = 2

√
xy. (A.6)

Observe that I(x, y) = I(y, x), and from this symmetry relation it follows that

K(x, y) + K(y, x) = 1− e−x−yI0 (2
√

xy) , (A.7)

which is not given in Temme (1986). In (A.6), I1(ξ) is the modified Bessel
function of the first kind of order one. The analysis in Temme (1986) is focused
on the asymptotic properties of I(x, y) for large values of x and y. In fact the
asymptotic properties of the function

F (x, y) = K(x, y) + 1
2
e−x−yI0 (2

√
xy) (A.8)

are studied. The symmetry rule for this function reads

F (x, y) + F (y, x) = 1. (A.9)
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The first term approximation for F (x, y) given in Temme (1986) reads

F (x, y) ∼
√

x +
√

y

4xy1/4
erfc

(√
y −

√
x
)
, y ≥ x, (A.10)

where erfc z denotes the complementary error function

erfc z =
2√
π

∫ ∞

z
e−t2 dt. (A.11)

The above results are exposed here not only so that the reader does not have
to refer in depth to the works cited (even though they are also apparent in
Temme (1986)), but because they apply in the routines for the algorithms in
the case of numerical calculations given in the appendix.

The approximation in (A.10) holds for large y, uniformly with respect to x,
0 < δ ≤ x ≤ y, where δ is a fixed positive number. It gives the exact value 1

2

when x = y, and for y � x it is exponentially accurate. This follows from the
estimate

erfc z ∼ 1

z
√

π
e−z2

, z →∞. (A.12)

When x ≥ y we can use (A.9), and obtain

F (x, y) ∼ 1−
√

x +
√

y

4
√√

xy
erfc

(√
x−√y

)
, x ≥ y ≥ δ > 0. (A.13)

This non-uniform behaviour of F (x, y) for large x and y also occurs for K(x, y).
In fact we have the following limiting values. First observe that from (A.7) it
follows that

K(x, x) = 1
2

[
1− e−2xI0(2x)

]
. (A.14)

For large values of x the right-hand side approaches 1
2
, because

I0(z) ∼ ez

√
2πz

, z →∞ (A.15)

(see 9.7.1 of Abramovitz & Stegun (1964) or (9.54) of Temme (1996)). For
fixed x and large y we can use (A.3) and (A.15) to show that K(x, y) tends to
zero. From (A.3) and (A.4) we conclude that for fixed y and large x, K(x, y)
tends to unity. In other words,

lim
y→∞

K(x, y) = 0, x fixed,

lim
x→∞

K(x, x) = 1
2
,

lim
x→∞

K(x, y) = 1, y fixed.

(A.16)
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B Mathematica routines

To speed the calculations in Wolfram Research’s Mathematica 5.0 c©, the fol-
lowing routines have been developed by the authors which still carry a pre-
cision of 10−8. The modified Bessel function of the first kind of order zero
is calculated to the precision available in Mathematica for all numbers lesser
than 50 and rounded by a ratio of polynomials for numbers exceeding 50:

i0[ t_ ] := If[t < 50, Exp^(-t)BesselI[0, t],

(Sum[Product[((2i + 1)^2)/(8t(i + 1)), {i, 0, j}],

{j, 0, 4}] + 1)/
√

2πt]

The modified Bessel function of order one of the first kind has the following
routine:

(i2[ x_ ]:= Module [{term, i1, k},

If[x < 50,

i1 = Exp^(-x) BesselI[1, x], term = 1;

i1 = 1;

Do[

term = (2k - 1)(2 k + 3)term/(8 x (k + 1));

i1 = i1 + term, {k, 0, 4}];

i1 = i1/
√

2πx
];

i1])

An algorithm for the K−function is:

(Ka[x_ ,y_ ] := Module[{xx , yy , phis, s, As , u , fxy},

If[y < x,

yy = x; xx = y,

yy = y; xx = x];

If[xx == yy,

u = (1 - i0[2xx])/2,

sqx=
√
xx;

sqy=
√
yy;

u = Exp^(-(sqy - sqx))^2)/(sqy - sqx);

As[0]=1;

phis[0]=
√

π Erfc[sqy - sqx];

Do[{As[s_]:=(-(2(s-1))+1))^2)As[s-1])/(8s),

phis[s_]:=(sqy-sqx)^2/(2 sqx sqy)/

((s-1)+1/2)(u/(2 sqx sqy)^(s - 1)

- phis[s - 1])},

s, 1, 4];
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fxy=(sqx+sqy)/(2(
√

4π sqx sqy))

(As[0]phis[0]-As[1]phis[1]+As[2]phis[2]

-As[3]phis[3]+As[4]phis[4]);

If[y <x, fxy = 1 - fxy, ];

u = fxy - Exp^(-(
√
yy−

√
xx)^2)i0[2

√
xx

√
yy]/2];

u]

where Erfc is the complementary error function.

B.1 Maple routines

Below are the same routines in Maple programming language.

i0t:= proc(t) # comment: e^(-t) I_0(t)

local k, term, i0;

if t < 100 then i0:= evalf(exp(-t)*BesselI(0,t))

else

term:= 1; i0:= 1;

for k from 0 to 4 do

term:=(2*k+1)^2*term/(8*t*(k+1));

i0:= i0+term

od;

i0:= evalf(i0/sqrt(2*Pi*t))

fi;

i0

end;

i1t:= proc(t) # comment: e^(-t) I_1(t)

local k, term, i1;

if t < 100 then i1:= evalf(exp(-t)*BesselI(1,t))

else

term:= 1; i1:= 1;

for k from 0 to 4 do

term:=(2*k-1)*(2*k+3)*term/(8*t*(k+1));

i1:= i1+term

od;

i1:= evalf(i1/sqrt(2*Pi*t))

fi;

i1

end;
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kxy:= proc(x,y) local As, phis, fxy, sqx, sqy, sqz, z, sigma,

xx,yy,u, s;

if y < x then yy:= x; xx:= y

else xx:= x; yy:= y

fi;

if x = y then u:= evalf((1-i0t(2*x))/2)

else

sqx:= evalf(sqrt(xx)); sqy:= evalf(sqrt(yy));

sqz:= sqy-sqx; z:= sqz^2;

xi:= 2*sqx*sqy; sigma:= z/xi; u:= exp(-z)/sqz;

As[0]:= 1; phis[0]:= sqrt(Pi)*erfc(sqz);

for s from 0 to 3 do

As[s+1]:= -(2*s+1)^2*As[s]/(8*(s+1));

phis[s+1]:= sigma/(s+1/2)*(u/xi^s-phis[s])

od;

fxy:= evalf((sqx+sqy)/(2*sqrt(2*Pi*xi))*

(As[0]*phis[0]-As[1]*phis[1]+As[2]*phis[2]-

As[3]*phis[3]+As[4]*phis[4]));

if y < x then fxy:= 1-fxy

fi;

u:= eval(fxy-exp(-z)*i0t(xi)/2)

fi;

u

end;
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